Math 522 Exam 7 Solutions

1. Use the Chinese Remainder theorem to find three consecutive integers, each divisible by the square of a prime.

There are many ways to set up this problem. We seek x such that $4 \mid x-$ $2,9|x-1,25| x$. This corresponds to the system of modular equations $\{x \equiv 2($ $\bmod 4), x \equiv 1(\bmod 9), x \equiv 0(\bmod 25)\}$. In the notation of Thm. 5.4, we have $c_{1}=2, c_{2}=1, c_{3}=0, m_{1}=4, m_{2}=9, m_{3}=25$. Hence $n_{1}=225, n_{2}=$ $100, n_{3}=36$. We now find the inverse of $n_{1}=225 \equiv 1(\bmod 4)$, which is 1 . We find the inverse of $n_{2}=100 \equiv 1(\bmod 9)$, which is also 1 . We don't need to find the inverse of $n_{3}=36 \equiv 11(\bmod 25)$, but it happens to be -9 (or 16). Hence our solution is $x=2(225)(1)+1(100)(1)+0(36)(-9)=550$, giving the desired three consecutive integers $\{548,549,550\}$.
2. Prove that if p denotes an odd prime, then $2^{\frac{p-1}{2}} \equiv \pm 1(\bmod p)$.

BONUS: Characterize all $n \in \mathbb{Z}$ such that $n^{\frac{p-1}{2}} \equiv \pm 1(\bmod p)$.
Set $x=2^{\frac{p-1}{2}}$. Note that $\operatorname{gcd}(2, p)=1$, so by Euler's Theorem, $x^{2}=2^{p-1} \equiv 1($ $\bmod p)$. Hence $x^{2}-1=(x-1)(x+1) \equiv 0(\bmod p)$. Now, by problem 2 from exam 5 , either $x-1 \equiv 0(\bmod p)$ or $x+1 \equiv 0(\bmod p)$. [More detailed proof: if $p \mid(x-1)(x+1)$ then either $p \mid x-1$ or $p \mid x+1]$. Hence $x \equiv \pm 1(\bmod p)$.

BONUS: The identical argument works if we replace 2 by any n with $\operatorname{gcd}(n, p)=$ 1. On the other hand, if $\operatorname{gcd}(n, p) \neq 1$, then $\operatorname{gcd}(n, p)=p$, so $p \mid n$. Now we have $n^{\frac{p-1}{2}} \equiv 0^{\frac{p-1}{2}} \equiv 0 \not \equiv \pm 1(\bmod p)$. Hence the modular equation holds if and only if $p \nmid n$.
3. High score $=102$, Median score $=77$, Low score $=53$

